С точки зрения изучения принципов представления и обработки информации в компьютере, обсуждаемые в этом пункте системы представляют большой интерес.
Хотя компьютер «знает» только двоичную систему счисления, часто с целью уменьшения количества записываемых на бумаге или вводимых с клавиатуры компьютера знаков бывает удобнее пользоваться восьмеричными или шестнадцатиричными числами, тем более что, как будет показано далее, процедура взаимного перевода чисел из каждой из этих систем в двоичную очень проста - гораздо проще переводов между любой из этих трех систем и десятичной.
Перевод чисел из десятичной системы счисления в восьмеричную производится (по аналогии с двоичной системой счисления) с помощью делений и умножений на 8. Например, переведем число 58,32(10):
58 : 8 = 7 (2 в остатке),
7 : 8 = 0 (7 в остатке).
0,32 • 8 = 2,56,
0,56 • 8 = 4,48,
0,48-8=3,84,...
Таким образом,
58,32(10) =72,243... (8)
(из конечной дроби в одной системе может получиться бесконечная дробь в другой).
Перевод чисел из десятичной системы счисления в шестнадцатеричную производится аналогично.
С практической точки зрения представляет интерес процедура взаимного преобразования двоичных, восьмеричных и шестнадцатиричных чисел. Для этого воспользуемся табл. 1.6 чисел от 0 до 15 (в десятичной системе счисления), представленных в других системах счисления.
Для перевода целого двоичного числа в восьмеричное необходимо разбить его справа налево на группы по 3 цифры (самая левая группа может содержать менее трех двоичных цифр), а затем каждой группе поставить в соответствие ее восьмеричный эквивалент. Например:
11011001= 11011001, т.е. 11011001(2) =331(8).
Заметим, что группу из трех двоичных цифр часто называют «двоичной триадой».
Перевод целого двоичного числа в шестнадцатиричное производится путем разбиения данного числа на группы по 4 цифры - «двоичные тетрады»:
1100011011001 = 1 1000 1101 1001, т.е. 1100011011001(2)= 18D9(16).