Система счисления - принятый способ записи чисел и сопоставления этим записям реальных значений. Все системы счисления можно разделить на два класса: позиционные и непозиционные. Для записи чисел в различных системах счисления используется некоторое количество отличных друг от друга знаков. Число таких знаков в позиционной системе счисления называется основанием системы счисления. Ниже приведена табл. 1.4, содержащая наименования некоторых позиционных систем счисления и перечень знаков (цифр), из которых образуются в них числа.
Таблица 1.4. Некоторые системы счисления
Основание |
Система счисления |
Знаки |
2 |
Двоичная |
0,1 |
3 |
Троичная |
0,1.2 |
4 |
Четвертичная |
0,1,2,3 |
5 |
Пятиричная |
0,1,2,3,4 |
8 |
Восьмиричная |
0,1,2,3,4,5,6,7 |
10 |
Десятичная |
0,1,2,3,4,5,6,7,8,9 |
12 |
Двенадцатиричная |
0,1,2,3,4,5,б,7,8,9,А,В |
16 |
Шестнадцатиричная |
0,1,2,3,4,5,6,7,8,9,A.B,D,E,F |
В позиционной системе счисления число может быть представлено в виде суммы произведений коэффициентов на степени основания системы счисления:
AnAn-1An-2
… A1,A0,A-1,A-2 =
АnВn
+ An-1Bn-1 + ... + A1B1
+ А0В0 + A-1B-1 + А-2В-2 + ...
(знак «точка» отделяет целую часть числа от дробной; знак «звездочка» здесь и ниже используется для обозначения операции умножения). Таким образом, значение каждого знака в числе зависит от позиции, которую занимает знак в записи числа. Именно поэтому такие системы счисления называют позиционными. Примеры (десятичный индекс внизу указывает основание системы счисления):
23,43(10) = 2*101 + З*10° + 4*10-1 + З*10-2
(в данном примере знак «З» в одном случае означает число единиц, а в другом - число сотых долей единицы);
692(10) = 6* 102 + 9*101 + 2.
(«Шестьсот девяносто два» с формальной точки зрения представляется в виде «шесть умножить на десять в степени два, плюс девять умножить на десять в степени один, плюс два»).