Может быть рассмотрен специальный вид
ad - da; eca - ae
bc - cb; eda - be
bd - db; edb - be
Слова abcde и acbde - смежные (подстановка bc - cb). Слова abcde
- cadbe эквивалентны.
Может быть рассмотрен специальный вид ассоциативного исчисления, в котором подстановки являются ориентированными: N > М (стрелка означает, что подстановку разрешается производить лишь слева направо). Для каждого ассоциативного исчисления существует задача: для любых двух слов определить, являются ли они эквивалентными или нет.
Любой процесс вывода формул, математические выкладки и преобразования также являются дедуктивными цепочками в некотором ассоциативном исчислении. Построение ассоциативных исчислений является универсальным методом детерминированной переработки информации и позволяет формализовать понятие алгоритма.
Введем понятие алгоритма на основе ассоциативного исчисления: алгоритмом в алфавите А называется понятное точное предписание, определяющее процесс над словами из А и допускающее любое слово в качестве исходного. Алгоритм в алфавите А задается в виде системы допустимых подстановок, дополненной точным предписанием о том, в каком порядке нужно применять допустимые подстановки и когда наступает остановка.
Пример
Алфавит: Система подстановок В:
А = {а, b, с} cb - cc
сса - аb
ab – bса
Предписание о применении подстановок: в произвольном слове Р надо сделать возможные подстановки, заменив левую часть подстановок на правую; повторить процесс с вновь полученным словом.
Содержание Назад Вперед