Получим более эффективный и устойчивый метод. Он аналогичен переходу от метода Эйлера к одному из вариантов метода Рунге - Кутта второго порядка (называемому иногда модифицированным методом Эйлера). Усредним пространственный член уравнения (7.49) по времени:
Это, безусловно, лучшая чем в (7.57) аппроксимация производной
Расплатой за эффективность является то, что (7.58) - неявная схема, т.е. не формула для непосредственного расчета, как (7.57), а система линейных алгебраических уравнений для величин u
Заметим, что (7.58) есть система специального вида - с трехдиагональной матрицей. В самом деле, если выписать первое, последнее и некоторое промежуточное ;'-е уравнения, перенося неизвестные в левые части, получим
Конечно, к таким системам можно применять стандартные методы решения систем линейных алгебраических уравнений, но для них существует и специализированный высокоэффективный метод, называемый «методом прогонки». За деталями отсылаем к учебникам по численным методам.
Пример.
Рассмотрим динамику изменения температуры в стержне длиной 4 м с теплоизолированными концами, температура на которых поддерживается постоянной и равна 3°С с начальным условием f(x) = -0,5x2 + 2x + 3. Коэффициент а в уравнении (7.49) примем равным 0,78 (выбор этот достаточно произволен).
Для демонстрации работы явной схемы (7.57) произведем расчеты по этой формуле на первом шаге.