Информатика -продвинутый курс



         

МОДЕЛИ ВНУТРИВИДОВОЙ КОНКУРЕНЦИИ - часть 3


Более общая гипотеза о законе падения скорости роста популяции в зависимости от ее численности приводит к следующему уравнению:

(7.63)

Общность данной модели в отличие от уравнения (7.62) обусловлена введением в модель параметра b,

который определяет тип зависимости падения скорости роста популяции от ее численности.

Набор величин a, b, R

можно использовать для сравнения и противопоставления сильно различающихся ситуаций. Другим положительным качеством уравнения (7.63) является его способность освещать новые стороны реального мира. Путем анализа кривых динамики популяций, полученных с помощью уравнения, можно прийти к предварительным выводам относительно динамики природных популяций.

На рис. 7.39, а, б, в и г, построенных с помощью численного моделирования, показаны различные варианты динамики численности популяций, полученные с помощью уравнения (7.63) при разном сочетании параметров b и R.

Рис. 7.39, а. Монотонное установление стационарной численности популяции при b =1,4, R

=2

Рис. 7.39, б. Колебательное установление стационарной численности популяции при b

=3,9, R =2

Важной частью исследования, связанного с моделью (7.63), является построение на фазовой плоскости (b, R) границ, которые разделяют монотонное затухание, затухающие колебания, устойчивые предельные циклы и случайные (хаотические) изменения, рис. 7.40 Для этого надо задаться значениями а

и N0

и производить расчеты, изменяя параметры b, R. Различить каждый из возможных режимов можно попытаться визуально, выполняя построение на экране компьютера графиков изменения численности популяции и запоминая соответствующие значения параметров b, R при переходе от одного режима к другому. Следует, однако, понимать,

Рис. 7.39, в. Устойчивые предельные циклы изменения численности популяции при b

= 3,6, R = 4

Рис. 7.39, г. Случайные изменения численности популяции при b =

4,4, R = 4

что установление различии между квазипериодическими, апериодическими и хаотическими движениями - сложная математическая задача.


Содержание  Назад  Вперед