В простейшем случае орнамент характеризуется только переносной симметрией. Для построения такого орнамента надо выбрать соответствующую плоскую решетку, заполнить элементарную ячейку решетки определенным рисунком и затем многократно повторить этот рисунок за счет переносов ячейки без изменения ее ориентации. Для построения более сложных по композиции орнаментов рисунок элементарной ячейки заполняется из основного (элементарного) мотива с помощью образующих этого типа симметрии плоских орнаментов. Существует 17 типов симметрии плоских орнаментов, которые определяются следующим образом:
1) два параллельных переноса:
2) три центральных симметрии;
3) две осевые симметрии и параллельный перенос;
4) две скользящие симметрии с параллельными осями;
5) осевая и скользящая симметрии с параллельными осями;
6) симметрия относительно четырех сторон прямоугольника;
7) одна осевая и две центральные симметрии;
8) две скользящие симметрии с перпендикулярными осями;
9) две осевые симметрии с перпендикулярными осями и одна центральная симметрия;
10). центральная симметрия и вращение на 90°;
11) симметрия относительно трех сторон прямоугольного равнобедренного треугольника;
12) осевая симметрия и вращение на 90°;
13) два вращения на 120°;
14) осевая симметрия и вращение на 120°;
15) симметрия относительно равностороннего треугольника;
16) центральная симметрия и вращение на 120°;
17) симметрия относительно трех сторон прямоугольного треугольника с углом 30°.
Несколько слов о частных случаях орнаментов. Бесконечная плоская фигура Ф называется плоским орнаментом, если выполняются следующие условия: 1) среди перемещений, отображающих Ф на себя, существуют неколлинеарные параллельные переносы; 2) среди всех векторов (параллельных переносов), отображающих Ф на себя, существует вектор наименьшей длины.