Информатика -продвинутый курс


ДВИЖЕНИЕ НЕБЕСНЫХ ТЕЛ - часть 2


Мы взяли эти слова в кавычки, так как при изучении движения космических тел нет столь отчетливо выделенного «начального момента», как в ранее рассмотренных ситуациях. При моделировании нам придется принять некоторое положение условно за начало, а затем изучать движение дальше. Очень часто космические тела движутся практически с постоянной скоростью по орбитам, близким к круговым. Для таких орбит легко найти элементарное соотношение между скоростью и радиусом. В этом случае сила тяготения выступает в роли центростремительной, а центростремительная сила при постоянной скорости выражается известной из начального курса физики формулой mv2/r. Таким образом, имеем

 

 

или

 

(7.22)

 

- искомое соотношение.

Период движения по такой орбите

 

 

Заметим, что отсюда вытекает один из законов Кеплера, приведший Ньютона к открытию закона всемирного тяготения: отношение кубов радиусов орбит любых двух планет Солнечной системы равно отношению квадратов периодов их обращения вокруг Солнца, т.е.

. Более точная формулировка дана ниже (так как реально орбиты планет не вполне круговые). Если соотношение (7.22) нарушено, то орбита не будет круговой. Выяснить, какой она будет, можно в ходе численного моделирования. Сведем (7.21) к системе четырех дифференциальных уравнений первого порядка:

(7.23)

 

В этой задаче особенно неудобно работать с размерными величинами, измеряемыми миллиардами километров, секунд и т.д. В качестве величин для обезразмеривания удобно принять характерное расстояние от Земли до Солнца ? = 1,496•1011 м, (так называемая, астрономическая единица), период круговой орбиты

, соответствующий этому расстоянию, скорость движения по ней
,
т.е. принять

 

 

После обезразмеривания получаем

 

(7.24)

 

Отметим замечательное обстоятельство: в безразмерных переменных уравнения вообще не содержат параметров! Единственное, что отличает разные режимы движения друг от друга - начальные условия.

Можно доказать, что возможные траектории движения, описываемые уравнениями (7.24) - эллипс, парабола и гипербола.




Начало  Назад  Вперед



Книжный магазин